Человек и компьютер чем мы опасны друг для друга чем опасен для нас компьютер компьютер - высокотехнологичное технически хорошо продуманное устройство, - презентация. Компьютер и человек: кто сильнее? Кто умнее человек или компьютер

Добавлена 15.03.2010 11:12:00

Компьютер и человек

Сейчас вот мы сидим за компьютером, нажимаем клавиши и пялимся в монитор. А что это за адская машина перед нами? Она получает какие-то входные данные, а выдает – другие данные. И как принято считать – сама не создает ничего нового.

Но ведь можно считать, что и человек тоже, как и компьютер, «не создает новое знание», а только перерабатывает полученную информацию и выдает ее в новом виде. У человека гораздо больше источников информации («входных данных»), чем у компьютера. Человек может видеть, слышать, переживать и т.д. – испытывать все чувства, которыми наградила его природа. И эти «входные данные» пока очень трудно (невозможно на данном этапе технического развития) ввести в компьютер.

И еще небольшое наблюдение: наверное, создание компьютера можно сравнить с изобретением колеса – по прямой дороге автомобили и поезда могут развивать скорость намного большую, чем человек с его шагающим механизмом (впрочем, гепард тоже может бегать со скоростью 120 км в час). Но на сильно пересеченной местности (в лесу, в горах) скорость колесной машины сильно замедляется, и здесь уже шагающий механизм более надежный, чем колесо. Так и компьютер при вычислениях «по прямой» развивает скорости, не доступные человеку. (Опять же замечу, что я читала о молодом человеке, который в уме перемножал очень большие числа).

Так чем же все-таки принципиально отличается компьютер от человека? Вдруг он тоже умеет думать? Только мы его пока спрашивать не умеем.

Не хотелось бы углубляться в проблемы художественного творчества, - оно связано с чувствами, которые еще не возможно заложить в компьютер.

Человек творит и создает «новое» на основе уже имеющейся информации (даже когда фантазирует). Он ее перерабатывает и выжимает из нее что-то, что не замечают другие. Обычно – это и называется новым.

Человек, в отличие от компьютера, может совершать нелогичные поступки. Но и у человека при всей его логике могут возникнуть парадоксы.

Ведь был же логично, что Солнце крутится вокруг Земли. Оказалось – нелогично.

Отсутствие логики – это просто отсутствие достаточной информации.

Иногда и компьютер ведет себя «нелогично». Вы не пробовали отлаживать программы? Уверяю вас, представления о логике могут сильно пошатнуться. Вроде бы, думаешь, все правильно, программа должна работать на все 100! Так нет – в какой-нибудь ситуации вдруг пойдет в такой разнос, что единственное средство – выдернуть шнур из розетки.

И вообще, мне кажется, наши логические переходы и причинно-следственные связи – очень хрупкие создания.

Наши ум и логика могут рождать парадоксы – зто уже и есть отсутствие логики. А если человека поглубже копнуть, то почти всегда можно найти где и почему у него там стрельнуло, кольнуло, что захотелось сделать именно то, что сделал. Можно будет построить вполне логичную закономерность. Например, человек в душе сильно боится свой тещи, но никому не говорит об этом. Поэтому иногда его поступки кажутся абсурдными.

Да и Фрейда тут можно припомнить.

Поведение человека, как и компьютера, тоже обуславливается неявно заданными условиями его психики, здоровья, окружающей обстановкой, тем, что покушал на завтрак и т.д. Что внешне и проявляется как нелогичное поведение и поступки.

Только компьютер попроще – с горем пополам можно докопаться до этих условий и выявить их. А вот с человеком посложнее – некоторые аналитические механизмы могут загореться синим пламенем.

Двадцать первый век – век информационных технологий. Пятилетние дети уже вовсю играют в развивающие игры. Кто бы мог подумать, что дети станут мыслить на порядок выше своих родителей касаемо компьютера, однако это так. Компьютер в жизни современного человека является его неотъемлемой частью. Если задуматься, насколько уникально это изобретение, то невольно начинаешь понимать, насколько уникален и сам человек, раз изобрел это и использует практически во всем. Прогресс в информационных технологиях словно носорог – разгонялся медленно, а сейчас его практически невозможно остановить. Производители комплектующих вынуждены создавать более совершенные изделия в условиях конкуренции. В этой статье я желаю произвести сравнение человека и компьютера, что общего между нами и электронными творениями человеческого ума.

В очередной раз, выйдя на улицу, я представил себя частичкой большого города. Вспомнился интересный разговор с мало знакомым человеком в поезде, где он так часто упоминал мне о том, что я являюсь частью системы, и все мои движения в большинстве своем укладываются в рамки общепринятых правил и норм. Я, словно тот самый электрон, что в организованной колонне себеподобных движется в заданном направлении по проводам. Несколько неприятно ощущать себя предсказуемым и зависимым, отдаваясь свободному течению жизни, полагаясь только лишь на желания и инстинкты. Но тем мы и отличаемся от машин, что можем действовать осознанно.

Человеческий мозг – мощнейший компьютер, который также, получая питание, решает определенного рода задачи. Взять к примеру зрение. Не существует в мире столь же четкого видео, насколько четко и мягко реальность вливается к нам в глаза. Не существует такой камеры, которая способна обработать такое же количество пикселей, как человеческий мозг. Вы видели в продаже видеокамеру в двести шестьдесят мегапикселей?! …но вы смотрите в нее каждый день. Зрачок посредством маленьких мышц сужается и расширяется для того, чтобы фокусировать изображение, все зависит от того, куда мы намерены смотреть, насколько близко или насколько далеко. Эту же операцию при съемке фото или видеокамерой выполняет объектив. Изображение воспринимается микроскопической матрицей, подобно сетчатке глаза. Процессор видеокамеры обрабатывает каждый пиксель и укладывает биты в определенном порядке, который задает программа записи и воспроизведения. При этом на дисплее мы видим отражение той реальности, которую способна узреть и воспроизвести эта камера. На рынке много различных моделей, все они отличаются качеством записи, глубиной цветов и прочим, но если их сравнивать с нашим зрением, понимаешь, насколько они ограничены. Ограничены разрешением съемки, дальновидностью зума, количеством оттенков записи и многим другим. К примеру, существуют стандарты количества оттенков изображения, от черно-белого, до многомиллионного. Каким бы не было это изображение, реальность просматривается нами гораздо мягче и мозгу не приходится дорисовывать в общую картину недостающие частички пазла. Отсюда и уставшие глаза, и головные боли при длительном контакте с монитором.

Звук. Имея кучу различных параметров, относится к колебаниям молекул в различных средах. На сегодняшний день изучен во всей красе. Музыка, радиотрансляция, сотовая связь – основаны, так или иначе, на тех же самых колебаниях молекул. Частота – одна из основных характеристик звука. Человек способен воспринимать звуки с частотой от 20 до 20 000 герц (количество колебаний в секунду), но при этом, чувствует себя не комфортно, если слышит из динамика песню с частотой дискретизации даже в 22 050 герц. Это говорит о том, что в реальности – человеческий слух гораздо тоньше, нежели об этом повествует физика. Звуковой файл, записанный в любом формате, с любой частотой, любым битрейтом – является ограниченной частью реального звучания. Это как смотреть в маленькое окно, не видя остального мира; как дышать сквозь противогаз, не ощущая запахов; как касаться чего-то сквозь перчатки, почти не осязая предмета…

Компьютер в целом состоит из различных электроузлов. Питание – блок питания преобразует электричество в удобную для восприятия системы форму. У человека это кислород и другие химические элементы, полученные путем газообмена в легких и процессами пищеварения в пищеварительной системе. Оперативная память хранит в себе текущую информацию, работает, пока на нее подается напряжение, имеет крайне ограниченный объем, относительно физической памяти. Человек решает текущие мелкие задачи, о которых мгновенно забывает, в памяти это хранится очень короткий промежуток времени, это временная (быстрая) память. Физическая память на компьютере в виде жесткого диска или флеш памяти имеет немалый объем. При этом использование более эргономичных форматов экономит пространство. У человека существует такая же физическая память, только информация хранится в виде результата химической реакции и все же больше напоминает флеш память. Ведь если заряд на флешке полностью иссякнет, информация на ней будет утеряна, так же и у нас, если мы какой либо информации не даем подпитку, периодически не вспоминая ее, она попросту стирается. Процессор на компьютере отвечает за математику, он постоянно вычисляет. Информацию к нему подгоняет оперативная память и результаты забирает тоже она, словно секретарь. Люди отличаются коэффициентом интеллекта (IQ), это можно сравнить с частотой процессора на компьютере.

Таким образом, современные вычислительные машины далеки до совершенства, но мы используем их возможности почти на сто процентов. Человеческий мозг – совершенство и мы его почти не используем. Новое поколение рождается и растет в новом информационном поле, развивается гораздо быстрее. Может быть, когда-то, мы придем к тому, что одно слово будет заменять книгу.

Автор статьи - Алексей Синякин

Мы любим фантазировать и по-детски наивно хотим верить в то, что разум, созданный искусственно, станет нам не просто помощником в повседневных делах, а другом, компаньоном и равноценным партнёром. Мы мечтаем о том, что искусственный разум будет способен общаться, творить, писать песни, развиваться самостоятельно, влюбляться и шутить.

Видео: отрывок из кинофильма «Двухсотлетний человек» по повести Айзека Азимова

Но будем реалистами: на настоящий момент то, что мы называем искусственным интеллектом - это компьютерные программы, призванные смоделировать процессы человеческого мышления. Собственно, так называется и наука, изучающая проблемы воссоздания разумных действий и рассуждений с помощью искусственных устройств и вычислительных систем. Проблема в том, что мы не понимаем всех механизмов человеческого интеллекта, поэтому и создать идентичный человеческому разум не можем. Более того, кажется, мы и не очень-то стремимся понять хоть что-то о нашем разуме. До сих пор в науке идут споры: насколько реально сознание. Именно при изучении нашего разума (с помощью нашего же разума) наука встаёт в тупик. Наука, как сфера деятельности, стремящаяся к объективности, не знает, с какой стороны подойти к субъективному явлению человеческого сознания (субъективному в том смысле, что оно состоит из субъективных ощущений, чувств и восприятия).

Основные вопросы о сознании:
Каким местом человек думает?
Как он этим местом думает?

Этой проблемой с 80-х годов прошлого столетия занимается Джон Сёрль , известнейший американский философ, профессор Калифорнийского университета, ведущий мировой специалист по философии искусственного интеллекта. Ещё он человек с непередаваемым чувством юмора. Проведите 15 приятных минут с Джоном Сёрлем и его сознанием:

Именно Сёрль поднял проблематику так называемых «сильного и слабого искусственного интеллекта».

Слабый искусственный интеллект - это компьютерные программы, от которых ожидается решение узкого спектра заранее определённых задач.

Сильный искусственный интеллект - это такие программы, которые будут способны мыслить, принимать решения, осознавать себя и окружение; при этом необязательно при этом будут являться моделью именно человеческого разума. Появится ли у сильного искусственного интеллекта способность к сопереживанию - остаётся неизвестным даже в теории.

В середине XX века, когда были созданы первые компьютеры и зародилась теория алгоритмов, вопрос об искусственном интеллекте был впервые поднят в научном сообществе.

1950

В 1950 году Алан Тьюринг, английский математик с непростой судьбой публикует статью под названием «Может ли машина мыслить?» . В статье он ставит вопрос: насколько различается искусственное мышление от человеческого? С целью ответа на этот вопрос он изобретает эмпирический тест, который впоследствии стал известен как тест Тьюринга.

Стандартная интерпретация теста Тьюринга:
Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы - ввести человека в заблуждение, заставив сделать неверный выбор.

Предполагается, что этот тест поможет определить тот момент, когда машина сравняется в плане разумности с человеком.

2014

В 2014 г. это произошло: программа-бот выиграла тест Тьюринга. Программа, созданная российскими разработчиками, притворялась тринадцатилетним подростком из Одессы под псевдонимом Eugene Goostman. Во время серии тестов в британском университете Рединга Юджин смог убедить 30% судей в том, что он - человек.

Значит ли это, что человечество уже добилось искусственного интеллекта? Нет. Сами разработчики говорят, что тест Тьюринга - отнюдь не лакмусовая бумажка, которая сможет сказать: «Всё, машины поумнели, а вы, жалкие людишки, можете отдыхать». Это свидетельствует лишь о развитии математических алгоритмов и способности программ оперировать синтаксическими средствами, свойственными человеческому языку. Вам же не придёт в голову назвать разумным смартфон, распознающий вашу речь и реагирующий на неё определённой последовательностью действий? Чат-бот Юджин скорее является представителем слабого интеллекта, чем сильного. Это не самообучающаяся и не осознающая себя система.

Кстати, о непростой судьбе самого Тьюринга:
Этот английский учёный после Второй мировой войны занимался взломом шифров нацистской шифровальной машины «Энигма». Вскоре после начала работ он был обвинён в гомосексуализме и согласился на прохождение принудительной гормональной терапии. Помимо этого его лишили доступа к секретным материалам и был вынужден прекратить исследования. В 1954 году Тьюринг умер от отравления цианидом, по официальной версии - вследствие самоубийства. А в прошлом году великий криптограф и математик был посмертно помилован британской королевой.

1997

В 1997 г. супермощный компьютер от IBM под названием Deep Blue выигрывает многократного чемпиона по шахматам Гарри Каспарова. Надо сказать, что Каспаров играл с этим компьютером годом ранее и одержал уверенную победу 4:2. За год компания IBM усилила его мощность почти в два раза. В этот раз Каспаров проиграл неожиданно, сдавшись на 45 ходу. Есть мнения, что при анализе спорного 44 хода чемпион и его команда вполне могли переоценить силу компьютера, что и привело к поспешной капитуляции.

Каспаров на церемонии закрытия этой исторической игры требовал реванша и обвинял IBM в нечестной игре (о, это так по-человечески!), но IBM вместо этого распустила команду Deep Blue. Но суперкомпьютеры продолжали свою жизнь, и их мощности используются сейчас для молекулярного моделирования в швейцарском центре Blue Brain .

2011

Снова IBM со своей разработкой под названием . Эта система способна воспринимать человеческую речь и производить поиск с помощью алгоритмов. Watson в 2011 г. сыграл в американской игре Jeopardy! (российский аналог - «Своя игра»), где и обошла обоих своих противников.

2012

Google, несомненный лидер по производству сервисов будущего, в 2010 г. начал тестирование автомобилей, оснащённых специальной системой беспилотного управления. Система собирает информацию с Google Street View и считывает реальную ситуацию с видеокамер, датчика на крыше, в передней части авто и датчика на заднем колесе. В проекте участвуют 10 автомобилей, 12 водителей и 15 инженеров. К настоящему моменту беспилотные «гугломобили» проехали уже более 500 тысяч километров с минимальным участием человека.

Мы перечислили лишь одни из самых значимых примеров систем искусственного интеллекта и их достижения. Так получается, что даже самые продвинутые из них скорее относятся к слабому искусственному интеллекту, чем к сильному. Восстания машин можно не опасаться и продолжать разрабатывать более тонкие алгоритмы взаимодействия компьютера с человеком.

А под конец предлагаем посмотреть научно-философскую притчу от «ЦентрНаучФильма», снятую в 1976 г. Открывается она диалогом из беседы с Виктором Михайловичем Глушковым , основоположником компьютерной науки и кибернетики в СССР:

Виктор Михайлович, будет ли когда-нибудь создан искусственный разум, который ни в чём не уступит человеческому? Могли бы вы ответить категорически: да или нет?
- Извольте. Да и ещё раз да. Это, видимо, произойдёт ещё до начала двадцать первого века.

Шахматная мозаика

Выпуск №2. (выпуск №1)

С юных лет автора статьи очень интересовал вопрос разработки шахматной программы, которая могла бы на равных противостоять человеку. Ведь есть же в эндшпиле точное правило квадрата, по которому можно определить, является пешка проходной или нет!

Последним толчком, который побудил к исследованиям в данной области, стало знакомство с результатами работы электронно-вычислительной машины Томпсона, которая с легкостью справлялась с теорией соответствующих полей.

Сложный в анализе эндшпиль был представлен в виде цифр, нанесенных на шахматную доску. Каждая цифра означала число ходов, за которое можно достигнуть выигрыша. Так, при ходе короля на одну клетку выигрыш достигался в 15 ходов, а при ходе на соседнюю клетку - уже в 28 ходов!

Автору статьи показалось, что таким образом и всю шахматную партию можно разложить по полочкам, проанализировать и создать четкий алгоритм, систему, которая позволит спрогнозировать наперед все развитие партии, а значит и успешно бороться против человеческого интеллекта.

Первыми разработками стали обычные алгоритмы на бумаге с анализом позиции на несколько ходов вперед и определением текущего хода в зависимости от того, насколько изменится материальное соотношение сторон на шахматной доске через несколько ходов. Уже позже были испробованы попытки реализации задачи на компьютере с помощью простых процедурных языков программирования, аппарат которых оказался недостаточным ввиду сложности рассматриваемой задачи.

Оказалось, что просто оценивать материальное соотношение сторон недостаточно - необходимо учитывать еще и факторы позиционной оценки.

Самым эффективным оказалось использование современных объектно—ориентированных языков программирования, которые позволяют исследовать сложные позиции. С ростом быстродействия компьютеров стало понятно, что можно использовать огромную базу дебютов, накопленных человечеством, типичные атаки в середине игры, несложные приемы в концовке шахматной партии, когда на доске остается пять - шесть фигур.

В настоящее время существуют уже готовые базы данных эндшпилей. Также на компьютере можно запрограммировать решение несложной задачи на постановку мата, тактические маневры, приводящие к выигрышу качества или целой фигуры.

Но все же компьютер пока еще не способен к творческому мышлению, авантюре, непредсказуемым комбинациям - всему тому, что присуще человеческому разуму. Даже в наш 21 век практически нельзя научить компьютер реагировать на жертву пешки или фигуры, приводящую в дальнейшем к выигрышу через 15 ходов. Электронно-вычислительная машина попросту «скушает» пешку или коня, так как согласно ее расчетам в данный момент выгодно побить фигуру, а в ближайшие 6-8 ходов (самая распространенная глубина счета) компьютеру не грозит мат или ухудшение материального положения в партии.

Еще одним недостатком является откровенное «подвисание» компьютера в эндшпилях, в которых задействовано большое число фигур. В библиотеке компьютера есть только самые типовые концовки партий типа пешка с королем против пешки или король с двумя пешками против короля. Когда же разыгрывается эндшпиль с большим количеством фигур, то компьютер не в состоянии стратегически рассчитать выгодные позиционные ходы. В таком шахматном окончании необходимо несколько десятков ходов, чтобы плавно нарастить позиционное преимущество, а потом превратить его в материальное.

Эти эндшпили просто не вписываются в строгий математический расчет, простой перебор вариантов. К тому же прекрасно известно, что даже перебор всех возможных позиций с глубиной в 6-10 ходов наперед является приблизительным. Компьютер или программа, играющая в шахматы, анализирует лишь острые варианты, связанные с изменение материального положения, возможной угрозы мата или значительным ухудшением позиции. В полный тупик электронно-вычислительную машину ставят так называемые «тихие» ходы - тактически тонкие маневры фигурами, сила которых проявляется через некоторое время, а не сразу.

Тем не менее, за последние шестнадцать лет компьютеры добились значительных успехов в сражениях против людей.

Первой самой громкой сенсацией стала победа шахматного компьютера с романтическим названием Deep Blue в 1997 году над Гарри Каспаровым со счетом 3.5 на 2.5 очка.

В октябре 2002 года Владимир Крамник сыграл вничью с компьютером «Deep Fritz». Крамник победил во второй и третьей партиях, а компьютер - в пятой и шестой партиях. Первая, четвертая, седьмая и восьмая партии закончились вничью.

С 26 января по 7 февраля 2003 года в Нью-Йорке проходил матч между Гарри Каспаровым и шахматным компьютером «Deep Junior 7». Легендарный гроссмейстер победил в первой партии. Компьютер праздновал успех в третьей партии. Остальные четыре партии закончились мирным исходом. Общий счет встречи - 3:3.

С 11 по 18 ноября 2003 года в Нью-Йорке состоялся матч между Гарри Каспаровым и шахматным компьютером «X3dFritz». Каждый из оппонентов выиграл по одной партии, а две партии закончились вничью.

Самые громкие победы электронно-вычислительных машин произошли в 2004-2006 годах. В 2004 году в двух партиях у чемпиона мира по версии ФИДЕ Руслана Пономарева выиграл шахматный компьютер «Hydra». В 2005 году тот же компьютер «Hydra» в матче из шести партий «разбил» со счетом 5.5 на 0.5 очка Майкла Адамса, занимавшего в то время седьмую строчку мирового рейтинга.

В 2005 году трио компьютеров-чемпионов («Hydra», «Deep Fritz» и «Junior») обыграло в объединенном матче команду из троих сильнейших гроссмейстеров (Руслан Пономарев, Веселин Топалов, и Сергей Карякин) с общим счетом 8.5 на 3.5 очка.

А самой громкой сенсацией стало поражение Владимира Крамника в следующем году от шахматного компьютера «Deep Fritz» со счетом 4:2.

Возможно, у читателей «Русского Базара» возник вполне резонный вопрос: неужели компьютеры в последнее время стали непобедимыми?

Дело в том, что во всех этих победах большую роль сыграл человеческий фактор. Гроссмейстеры допустили ряд грубых зевков, что привело к их поражению.

Еще одним фактором успеха стала возможность изменять базы данных программы по ходу матча. Если бы такой возможности не было, компьютер попросту мог бы быть разгромлен несколько раз одними и те же тактическими приемами.

Чемпионы мира Гарри Каспаров и Владимир Крамник выбирали на поединки правильные тактические схемы. Они выбирали малоизвестные дебюты, разменивались и быстро переходили в фигурный эндшпиль.

Причинами проигранных партий стали серьезные ошибки. Давайте рассмотрим вторую партию матча Гарри Каспарова в Deep Blue в 1997 году.

Компьютер играет белыми фигурами, а чемпион мира - черными.

1. e4 e5 2.Kf3 Kc6 3.Cb5 a6 4.Ca4 Kf6 5.O-O Ce7 6.Лe1 b5 7.Cb3 d6 8.c3 O-O 9.h3 h6 10.d4 Лe8 11.Kbd2 Cf8 12.Kf1 Cd7 13.Kg3 Ka5 14.Cc2 c5 15.b3 Kc6 16.d5 Ke7 17.Ce3 Kg6 18.Фd2 Kh7 19.a4 Kh4 20.Kxh4 Фxh4 21.Фe2 Фd8 22.b4 Фc7 23.Лec1 c4 24.Лa3 Лec8 25.Лca1 Фd8 26.f4 Kf6 27.fe de 28.Фf1 Ke8 29.Фf2 Kd6 30.Cb6 Фe8 31.Л3a2 Ce7 32.Cc5 Cf8 33.Kf5 Cxf5 34.ef f6 35.Cxd6 Cxd6 36.ab ab 37.Ce4 Лxa2 38.Фxa2 Фd7 39.Фa7 Лc7 40.Фb6 Лb7 41.Лa8+ Kf7 42.Фa6 Фc7 43.Фc6 Фb6+ 44.Kf1 Лb8

В этой позиции шахматный компьютер сделал слабый ход 45.Лa6? Гарри Каспаров мог спастись вечным шахом 45. ... Фe3! 46. Ф:d6 Лe8! 47. h4! h5!. Однако гроссмейстер предпочёл сдаться.

Почему компьютер «просмотрел» такой вариант как вечный шах?

С точки зрения электронно-вычислительной машины, она остается с материальным преимуществом, а если избежать вечного шаха, то материальное положение хуже. У компьютера напрочь отсутствует гибкость мышления, которая свойственна живому человеку.

В другой партии Каспаров умело воспользовался «жадностью» компьютерной программы. Пожертвовав пешку, чемпион мира получил выигрышную позицию. Нехватка времени и неточности в атаке позволили компьютеру свести партию вничью.

Даже чемпионам мира свойственно ошибаться, причем очень серьезно. Владимир Крамник при игре с шахматным компьютером «Deep Fritz» в 2006 году «зевнул» мат в один ход. Фактически это предопределило исход всего матча. Если бы эта партия закончилась вничью, то и весь поединок тоже.

Ранее, в 2002 году в первой встрече с программой «Deep Fritz» Крамник фактически «зевнул» коня.

Еще одним проигрышным вариантом для шахматиста будет попытка переиграть компьютер в комбинационной игре.

В том же матче Владимир Крамник решил в одной партии ввязаться в авантюру с жертвой слона за пару пешек. Компьютер просчитал матовую атаку и отбил ее. Шахматные компьютеры блестяще защищаются. Если у человека угроза мата и сильная атака вызывает желание только держать оборону, то для компьютера - это обычная математическая задача.

Грамотно защищаясь, электронно-вычислительная машина ведет свою игру, пытаясь параллельно атаковать. В защитных действиях компьютер практически непобедим.

Стоит признать, что в этих поединках гроссмейстеры изначально были поставлены в неравные условия. Во время игры сотни процессоров и резервные жесткие диски обеспечивали анализ партий за дополнительными досками. В то же время у чемпионов мира не было даже одной доски, где бы можно было сделать анализ.

Алгоритм работы ЭВМ был «заточен» под определенного человека. В то же время гроссмейстер не знал, как играет машина. Периодические перезагрузки и изменения в программу во время матчей говорят о том, что без команды разработчиков ЭВМ бы не справилась.

Шахматный компьютер умеет анализировать миллионы позиций в секунду, а человек за это время даже одну не сможет.

Тем не менее, электронно-вычислительным машинам пока еще очень далеко до человеческого разума. По сути, все проигрыши гроссмейстеров состоялись из-за зевков. Творческое, иррациональное мышление - вот что делает человека намного сильнее машины.

Но этот спор еще не закончен. В ближайшем будущем вновь и вновь предстоят увлекательные битвы человеческого творческого разума против холодного компьютерного расчета.

Печально осознавать, что в эпоху технического прогресса человеческий мозг по-прежнему остаётся загадкой. Кроме того, мы тратим миллионы долларов на развитие гигантских суперкомпьютеров и используем огромное количество энергии из невосполнимых ресурсов, чтобы обеспечить питанием эти приборы. А сравнительно маленький по размерам человеческий мозг по многим показателям по-прежнему превосходит самые мощные компьютеры.

Суперкомпьютеру требуется 82 944 процессоров и 40 минут работы, чтобы симулировать одну секунду мозговой активности человека.

В прошлом году суперкомпьютер K использовался учёными из Окинавского технологического университета в Японии и Исследовательского центра Юлих в Германии в попытке симулировать 1 секунду активности человеческого мозга.

Компьютер смог воссоздать модель из 1,73 миллиарда нейронов (нервных клеток). Однако в человеческом мозге около 100 миллиардов нейронов. То есть в человеческом мозге примерно столько нейронов, сколько звёзд в Млечном пути. Несмотря на то, что компьютеру удалось успешно симулировать 1 секунду мозговой активности, это заняло 40 минут.

Работник Корейского научного института проверяет суперкомпьютеры в Тэджоне, Южная Корея, 5 ноября 2004 г.


Суперкомпьютер К в 2011 г. был самым быстрым компьютером в мире. Его мощность около 10,51 петафлопс, т. е. примерно 10 510 триллионов операций в секунду. Технологии развиваются стремительно, поэтому сейчас К уже на четвёртом месте, на первом месте ― Tianhe-2 (33,86 петафлопс, 33 860 триллионов операций в секунду). Таким образом, за три года нам удалось утроить вычислительную мощность самого продвинутого компьютера.

Чтобы сделать эти цифры понятнее, iPhone 5п производит примерно 0,0000768 петафлопс. Итого, самый быстрый в мире компьютер примерно в 440 000 быстрее, чем графика iPhone 5, но медленнее, чем человеческий мозг.

В исследовании Мартина Хильберта из школы коммуникации Анненберга при Университете Южной Калифорнии, опубликованном в журнале Science в 2011 г., подсчитана способность мира обрабатывать информацию. Хильберт сформулировал её следующим образом: «Люди всего мира могут осуществить 6,4*1018 операций в секунду на обычных компьютерах образца 2007 г., что сравнимо с максимальным количеством нервных импульсов, возникающих в одном человеческом мозге за секунду».

Мозг дёшево обходится: он достаётся бесплатно

За исключением редких врождённых патологий мы все рождаемся с мозгом. Чтобы построить Tianhe-2, потребовалось $390 миллионов, сообщает «Форбс». При интенсивной работе он потребляет свыше 17,6 мегаватт энергии, площадь компьютерного комплекса занимает 720 кв. метров. Другие суперкомпьютеры более экономичны и потребляют около 8 мегаватт.

Для сравнения: 1 мегаватт равен 1 миллиону ватт. 100-ваттная лампочка при включении берёт 100 ватт. В итоге самый быстрый компьютер потребляет столько же энергии, сколько 176 000 лампочек.

Д-р Джефф Лайтон, технолог Dell корпорации по производству компьютеров, пишет в блоге: «Эти системы очень громоздкие, дорогие и энергозатратные».

Конечно, мозгу тоже требуется энергия. Он получает её из еды, для производства которой в современной сельскохозяйственной системе требуется топливо.

Компьютеры, которые мы используем в повседневной жизни, полезны. Но некоторые эксперты сомневаются в полезности суперкомпьютеров.

Газета South China Morning Post опубликовала статью о китайском суперкомпьютере Tianhe-2: «В отличие от персональных компьютеров, которые могут выполнять самые разные задачи -- от обработки текстов до игр и просмотра вэб-страниц, суперкомпьютеры построены для специфических задач. Для изучения их полной вычислительной возможности учёные потратили месяцы, если не годы, для написания и переписывания кодов, чтобы обучить машину эффективно выполнять свою работу».

Старший научный сотрудник из Пекинского компьютерного центра, пожелавший остаться анонимным, сказал South China Morning Post: «Пузырь суперкомпьютеров хуже, чем пузырь рынка недвижимости. Здание простоит десятилетия после того, как его построили, а компьютер, вне зависимости от того, настолько он быстрый по сегодняшним меркам, превратится в хлам уже через пять лет».

Что быстрее: компьютерный модем или человеческий мозг?

Многие учёные пытались измерить скорость обработки информации человеческим мозгом. Цифры, которые они называют, различаются и зависят от использованного подхода. Сравнение скорости модема и «скорости» работы мозга едва ли можно отнести к разряду точных наук.

Во-первых, нужно рассмотреть, сколько битов в секунду может обработать ваш мозг, затем посмотреть, сколько битов в секунду в среднем обрабатывает современный компьютер. Говоря иными словами, надо сравнить, сколько времени компьютеру требуется для загрузки изображения из Интернета, и сколько времени вам нужно, чтобы проанализировать то, что вы видите перед глазами.

Д-р Тор Норретрандерс, профессор философии из Бизнес-школы Копенгагена, написал книгу под названием «Иллюзия пользователя: сокращаем объём сознания», в которой он утверждает, что сознание обрабатывает примерно 40 бит/с, а подсознание — 11 миллионов бит/с.

Австрийский физик-теоретик Герберт В. Франке утверждал, что человеческий разум может осознанно усваивать 16 бит/с и осознанно удерживать в уме 160 бит/с. Он отмечает, что по этой причине ум может упростить любую ситуацию до 160 бит/с.

Фермин Москозо дель Прадо Мартин, когнитивный психолог из Университета Прованса во Франции, определил, что мозг обрабатывает примерно 60 бит/с. В своей статье в журнале Technology Review он сказал, что не уверен насчёт верхнего предела. То есть он не может утверждать, что мозг неспособен обработать больше 60 бит/с.

А теперь посмотрим, насколько быстро работает ваш компьютер дома.

Один мегабит в секунду равен 1 миллиону бит в секунду. Домашние модемы могут работать со скоростью от 50 мегабит в секунду до нескольких сотен мегабит в секунду. Это в миллион раз быстрее, чем ваше сознание, и, по крайней мере, в пять раз быстрее, чем ваше подсознание. То есть в этом отношении компьютеры однозначно превосходят мозг. Разумеется, эти цифры неточные, потому что с человеческим подсознанием многое до конца неясно.

Однако, хотя люди сравнительно медленно воспринимают информацию, то, как они умеют её обрабатывать, впечатляет.

Мы учимся и мы изобретаем

Учёные работают над созданием компьютеров, которые бы обладали творческими способностями. Но в настоящее время самый продвинутый искусственный интеллект в этом отношении уступает даже мозгу людей, живших тысячи лет назад.

Автор и инженер-электромеханик Райан Дьюб в статье для сайта MakeUseOf.com комментирует высказывание писателя Гэри Маркуса: «Фундаментальное различие между компьютерами и человеческим разумом ― это организация памяти».

Дьюб писал: «Чтобы найти информацию, компьютер использует расположения виртуальной памяти. В свою очередь человеческий мозг помнит, где находится информация благодаря намёкам. Они сами по себе являются единицей информации или памяти, связанной с информацией, которую надо найти.

«Это означает, что человеческий разум в состоянии связать между собой практически безграничное количество концепций самыми разными способами, а затем при получении новой информации убрать или восстановить эти связи. Эта особенность позволяет людям выйти за пределы уже изученной информации и создавать новые изобретения и искусство, что является отличительной особенностью человеческой расы».

Мозг мало изучен, и его преимущества до конца не раскрыты

National Geographic иллюстрирует, насколько сложно создать точную модель человеческого мозга. В февральском номере журнала в статье «Новая наука мозга» рассказывается, как учёные создали трёхмерную модель части мозга мыши размером с крупинку соли. Чтобы детально отобразить этот крошечный отдел, они использовали электронный микроскоп и разделили его на 200 секций, каждая толщиной в человеческий волос.

«Чтобы отобразить человеческий мозг схожим образом, потребовалось бы количество данных, превосходящее все тексты во всех библиотеках мира», ―пишет National Geographic.

В 2005 г. исследователи из Калифорнийского университета и Калифорнийского технологического института обнаружили, что лишь некоторые из 100 миллиардов нейронов в мозгу используются для хранения информации о конкретном человеке, месте или концепции. Например, они обнаружили, что когда людям показали фото актрисы Дженнифер Энистон, в мозгу реагировал один конкретный нейрон. А на фото актрисы Хэлли Берри реагировал уже другой нейрон.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то